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ABSTRACT

The propagation of electric currents and voltages along a pair of

wires over a ground plane is studied. The system is assumed to be non-

uniform; I. e., the self and mutual inductances and capacitances vary

along the wires. The existence and uniqueness of an electric wave having

prescribed initial values is shown to follow from recent results of the author

on symmetric hyperbolic systems of partial differential equations. A

construction for this solution is given in the case of a coupler (i. e.,

a pair of wires which are non-uniform and coupled over a portion of their

length only). This coupler problem is reduced to a two-point boundary

value problem, and the latter is reduced to a pair of initial value problems,

one of which involves a matrix Riccati equation. A novel feature of the work

is an "a priori" estimate which guarantees that a solution of the (non-linear)

matrix Riccati equation exists on the whole line.
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ELECTRIC WAVE PROPAGATION

ON NON-UNIFORM COUPLED TRANSMISSION LINES

Calvin H. Wilcox

Introduction. This paper deals with the propagation of electric

currents and voltages along systems of parallel wires. In the simplest

case there is a pair of wires, or a single wire over a ground plane. This

is called a single wire line. The case of n pairs of wires, or n wires

over a ground plane, is called an n-wire line.

The single wire line was analyzed by Kirckhoff in 1857, and the

* associated "Telegraph Equations" have since become the subject of a

large literature. This case is not considered here.

With the development of more sophisticated telegraphy and

telephony, analysis of the multiple wire lines was needed. The steady

state solutions for uniform n-wire lines have been analyzed by J. R.

Carson and R. S. Hoyt [2] , L. A. Pipes [13] , S. 0. Rice [17] and

others. The case of non-uniform multiple wire lines (achieved by

tapering the wires or varying their spacing) has received much less

attention (see [ 7] , [19]).

Sponsored by the Mathematics Research Center, U. S. Army, Madison,
Wisconsin under Contract No. DA-l 1-022-ORD- 2059.
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This paper treats the propagation of transient and steady state

waves on non-uniform multiple wire lines. For simplicity, the work Is

presented for the 2-wire case. However, this case is typical of the

general n-wire case and all the results presented here extend immediately

to the general case.

The propagation problem for non-uniform 2-wire lines is formulated

in § 1, and it is shown that the existence and uniqueness of a solution is

guaranteed by recent work of the author [ 21] under very general conditions.

The remainder of the paper is devoted to a special propagation

problem, the "coupler" problem. The 2-wire line is assumed to be non-

uniform and coupled over a finite portion of its length (the coupler) only,

and the propagation of waves through the coupler is studied. The coupler

problem is formulated in § 2, and a complete solution based on the Laplace

transform is given in § §3 and 4. In §4, the coupler problem is reduced

to a two-point boundary value problem for a system of four first order

ordinary differential equations. This problem is then reduced to two

one-point (or initial) value problems. The reduction employs a matrix

Riccati equation satisfied by the reflection coefficient matrix.

Matrix Riccati equations have been studied by W. T. Reid [ 15, 163,

R. L. Sternberg and H. Kaufman [19], J. J. Levin [9]], R. M. Redheffer [14]

and others. They have been applied to multiple transmission line problems

by Sternberg and Kaufman [19] and I. Kay [7]. Analogous scaler Riccati

equations for the impedance and reflection coefficient of a non-uniform
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single wire line were discovered by J. R. Pierce [ 12] and L. R. Walker

and N. Wax ( 20] ; see also ( 18]. In all of these papers, only the local

solvability of the Riccati equations is shown. A novel feature of the present

work is an "a priori" estimate which guarantees the existence of the desired

solution of the Riccati equation on every interval.

The special case of a "directional coupler", which is of great

interest for applications (10] , is analyzed in §5. Finally, in §6 the

analysis is adapted to the steady state case.
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1. The Propagation Problem for Non-Uniform Coupled Transmission

Lines. The electric currents and voltages on a pair of coupled loss-less

transmission lines are governed by equations of the form [1, 13]

8il 81i 8e+

2 ~ 1tmat a

8Le- 8 11 O- - =0

(1. 1)

eI a2 In1c---+cm- -+-• =0,

Be2 BeI 812

Ca2 + C e 2Cz--+- +C -+-=o .
2 at m at ax

Here t is the time, x is a coordinate aldng the lines, and 1I and 12

(resp. e1 and e 2 ) are the electric currents (resp. voltages) on the

first and second lines, while L1 and L2 are their self inductance per

unit length, C1 and C 2 their capacitance per unit length, and Lm and

Cm their mutual inductance and capacitance per unit length. The lines

are assumed to be non-uniform; i.e. L 1 , L2 , Lm, C1 , C2 and C are

functions of x.
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The quadratic form

1 22 2
•I = + (L"I 2 + L2 12 +CIeI + 2C mee 2 + C e22

is assumed to be positive definite and is interpreted as an energy density

(energy per unit length) on the lines [ 13]. The quadratic form

1ieI + iaz

is interpreted as a "Poynting vector" describing the flow of energy (energy

per unit time in the x-direction) on the lines. The equations (1. 1) imply

the conservation law

tn + L8 =
at ex

The most general sys.tems of linear partial differential equations

that possess quadratic energy densities and Poynting vectors related by a

conservation law were described by K. o. Friedrichs [ 6] who called them

"symmetric hyperbolic" systems. The system (1. 1) assumes the symmetric

hyperbolic form when written in the matrix notation
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L 0 0 1l 0 0 1 0 il 0

Lm L2  0 0 0 0 0 1 12 08 8a
+ ex

0 0 C 1 Cm 1 0 0 0 el 0

0 0 cm c2I 0 1 0 0 o2 0

The propagation problem for coupled transmission lines is to find a

solution of (1. 1) having prescribed initial currents and voltages,

i (x, 0) = a1(x), i2 (x, 0) = a2(x), el(x, 0) = b1(x), e2 (x, 0) = b2 (x)

for -oo < x < o . Local existence and uniqueness theorems for the initial

value problem for symmetric hyperbolic systems have been given by K. 0.

Friedrichs [6], P. D. Lax [8], G. F. D. Duff [5] and others. A global

existence theorem for solutions with finite energy was given by R. S.

Phillips [11]. Recently, the author [ 21] has proved a global existence

and uniqueness theorem for solutions with locally finite energy; 1. e.

satisfying

x 2(1.2Z) f 71(x, t) dx < co for all finite xl, x 2
xI
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The initial values are required to satisfy (1. 2) with t = 0, and the

coefficients are required to satisfy the conditions

(1.3) L1 (x), L2 (x), Lm(x), Cl(x), C 2 (x) and Cm (x) are bounded,

Lebesgue measurable functions of x on -oo< x < w0, and

(1.4) there exists a positive constant 6 such that

1 2 2 2 2 2 2 2 2Tj= ;2(L~ul + 2L InII1 2 + L 2 12 + C Ie I + 2C m eIe 2 + C 2 e 2 ) > 6(1i1 + 12 +e I +e e2 )

forall il, 12 , e, e2 and all x on -co<x<<o.

Note that

2 2 2

+v L (i LL, -a L )(-2 + ' ) +(C C(e1  + -1 + 2 2 0)

2 2 2 2

(1.5) L,-- L < k , <_ k

21 2 12
Hence i

-l- 2
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then

1-k 2 2 2 2vi>--(LiI + L~i2 + Cle 1 +C 2e 2 )

Thus (1.4) holds provided L1 , L?, C1, C2 are positive and bounded

away from zero and (L 5) holds with a constant k < I

If the Laplace transform with respect to t is applied to (1.1)

a system of four linear first order ordinary differential equations is

obtained. The solution with locally finite energy guaranteed by ( 21]

can be constructed in terms of the solutions of this system. This

method is used § §3 and 4, below, to solve the propagation problem

in a special case, the coupler problem.
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12. Formulation of the Coupler Problem. In the remainder of this

report the transmission lines are assumed to be coupled on a finite segment

0 < x < I only, and to be uniform and uncoupled outside this segment, in

the sense that Lm =C = 0 and L1 , L?, C1 and C2 are constants for

x < 0 and x > I (the same constants on both intervals). Under these

circumstances the segment 0 < x < I will be called a "coupler" between

the two lines. It can be shown that energy can pass from one line to the

other only in the coupler.

The voltages and currents on the uncoupled portions of the lin.s

satisfy the simple transmission line equations

81 8 e
at aex

(Z.l)

Be 81

where Lj, Cj, ti and e refer either to the first line (J =1) or the second

line (J = 2). This system is equivalent to the system

8 Ci Zji e1 ) =0,
"+ c L )(Z i + e 0 ,

( c - j )(Zji - e) 0 ,
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where

C =I/ILCjEj and Z

ii C

are the characteristic "wave velocity" and "impedance" of the lines,

respectively. It follows that

ij =f(Cvt - x) + g(ct t+x),

(e =Zj(f(cjt-x) -g(cjt+x))

where

(Z.3) f(c t-x) =Zjij +6e /ZZ and g(cjt + x)= Zj ij -ej ZZJ

are uniquely determined by the currents and voltages in the lines.

If h 1(T) a h2 (T)EO fir T<0 then

(2. 4) (i1, i., el, e) 2 (hI(clt-x), h,(cýt-x), ZIh,(clt-x), Z2 h 2(c 2t-X))

solves the system (1.1) for x (< •, t <0 . This solution may be

interpreted as a wave propagating along the portions x < 0 of the lines
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toward the coupler and striking it at a time to > 0. The propagation of

the wave through the coupler is described by the solution of the initial

value problem for (1. 1 ) with

(2.5) (1 (x, 0), i2 (x, 0), el(x, 0), e 2 (x, 0)) = (h,(-x), h2 (-x), Zlh 1(-x), Zzh 2 (-x))

This problem is called "the coupler problem" in what follows.

The current and voltage on line I will have the form (2. 2) for

x<0, -. o<t<(0 where, by (2.3) and (2.4), f(clt-x) =h l (cit-x)

end g(cIt +x) =0 for x<0, t<0. Thus f(T) -h 1 (T) for all T

and g(T) 5 0 for T < 0. Similar reasoning applies to line 2 for

x < 0 and to lines I and 2 for x> I. It follows that the solution

to the coupler problem has the form

(11, i., el, e?)

= (h1 (Clt-X) + rlClt + x), h2 (c 2 t-x)+ r 2 (c 2 t + x), Z i{hl(Clt-x) -rl(Clt + x)}, Z2 {h 2 (c 2 t-x) r 2 (c 2 t + x)} )

for x <, -0o<t< oo , where rl(T) mr 2 (T) M0 for T<0, and

(11, 12, el, e2 ) = (tl(clt-x), t 2 (c 2 t-x), Zlt l (clt-x), Z2 t 2 (c 2 t-x))

for x> A, -oo< t < o, where tl(T) =t 2 (T) 0 for T< -I . Evidently,
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the functions rl(clt + x) and r.(c2t + x) may be interpreted as reflected

waves produced by the coupler on lines 1 and 2, respectively, while

tl(clt - x) and t 2 (c 2 t - x) may be interpreted as waves transmitted through

the coupler.

The solution to the coupler problem may be derived from the solutions

for two special cases by a superposition principle (Duhamel's Principle; cf.

[4, p. 202]). To describe it let H(T) denote Heaviside's function, i.e.

, T > 0,

H(T) =

0, T<0,

11 1 1

and let (i , i2 , e , e 2 ) be the solution of the coupler problem corresponding

to an incident wave (2. 4) with

(2.6) hI (T) m H(T) , h2 (T) M 0

and (i, 12, e2, e2) the solution corresponding to an incident wave (2.4)

with

(2.7) hl(T) 0, h 2 (r) H(T).

Then It is easy to verify that
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(11(x, t), i1(x, t), el(x, t), e,(x, t))

OD

(2.8) 1- f (x,t-T) 12(x,t-T), el(x,t-r), e (xt-T))hI(clr)dr

00
+ f- (i(x,t-r), i2(x,t-T), el(x,t-1), e2(x,t-T))h (c T)dr

defines the solution of the coupler problem for an arbitrary incident wave

(2. 4). Hence, the remainder of this report treats the cases (2. 6) and

(2. 7) only.
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53. Formulation of the Laplace Transformed Coupler Problem. In

what follows, the Laplace transforms of tie solutions (Il, I2,eI, eI) and

2222~ 1111 222
2 e2 a r notdby (I11 ,1I I EI) and (1 2 12 E 2E); i.e.,

00~x --st I
(x,8) =f e il(x,t)dt , etc.

0

The solutions to the coupler problem have the form

1Z eI eZ

= (H(clt-x)+ rI l(clt+x), r2 1(c2 t +x), ZI{H(cv t-x) -r I (Clt +x)), -Z 2 r2 1(ct +x)),

i 2, el2, e 2

= (rl,(clt +x), H(c 2t-x)+ r2 2 (cCt + x), -ZIr1 2 (clt + x), Z2 {H(c 2t-x) -r 2 2 (C2 t +x)))

for x<0, where r, 1 (T) *r, 1 (T) =r1 2 (T) ar 2 2 (T) KO for T<0. Hence,

application of thte formula
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5I X S

(3.1) f e.St f(ct*x)dt i/ce c f ec f(T)dT

0 :kX

gives

1  2, El, Ez)

ME ax Ix Ixc c- o-2
=(l+pe Rl(s),e R2l(S),Z l- RlI(S)),-Z2  R2 1(s))

(3. Z)

(12,1 2 ,E 2, E2)

sx sx Sx sx

c c2 c c

sL (e )1 2 (s) C 2  s),-Ze (s), Z2{l-e R 2 2(s)})

for all x< 0, where

ST

R (S) = f- fo e crk(T)dT, l<J,k<2
ik cr0 ojk

Similarly, on x > I1
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( 2, SiZ, ee) = (t cýx), t 2 l(C 2 t-x), Z 1 1 (cýx), ZYt2 1(c 2 t-x))

(1,1 2 e (

1i•, i,, 2 ) (t 1 2 (Clt-X), t 2 2 (c 2 t-x), Zlt 12(clt-X), Z2tz 2 (c2t-x))

where tl(Tt1T) .t 2 l'r) Etl 2 (T) *t 2 2 (T) E0 for t( -I ,

whence by ( 3. 1)

s(x-I) s(x-I)s1-I S(X-I)

1( 11 E1 1 Cl c 2  Cl c 2(1,I 2 ,EI, =. (e Tl(S), e T2 1  1  1 1 (s),, Z2 e T2 1 (s))

(3.3)

s(x-I) S(X-I) s(X-I) s(X-I)

(1,1,E 1 E2  =j- (e T (S), e T2 2 (S), Zle T 2 (S), Zze T2 2 (s))

for all x> I, where

sl ST

Tk(Ss) e f 0 e tjk(T)dT , I<j,k< 2Tjk(S c j -k

On 0<x<I thebehaviorof (I2, El, E2) , J =1, , is governed

by the Laplace transform of the system (1. 1). Making use of the well-known
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rule

-st df (1) dt = -f(0) + sf e'Stf(t)dt
0 0

and the initial values ( iI 2 , e1 , e ( i2 , e1  , e2 ) = (0,0,0,0) for

t=O, O<x<l, gives

(3.4)

dEj
1,+ s(L 1 4j + CI 2 E= 0

dEj

d2 m 1 Az) =0

for O<x<l and J=m 2.

Any locally integrable solution of (3.4) will satisfy
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E(X) =E(x 0  a Xf {Ll ) 1'(e) + L(4 '(4 dx1x 0

where the integral is finite, by (1.3), and similar equations hold for

E1 I' and I'. Hence, any such solution is (absolutely) continuous.
2' 1 2

In particular, (3. 2) and (3. 3) imply

1 1 1 2

=I11I + Ris), R21 ls) l l " -Rl }, -Z2R21( s))

(3.5)

1 2 1 2

=11 0) 2( 0) E 10) +2 0)) Z R2(S

S12-( 22(s), 1+ R2 2(s), -Z•R1 2(s), z 2 {l- R2 2(s)} )

and

1 2 1 2

1

=I'(Tl(s), TzllS), ZlT 1 1lS), ZzT 2 (s))

(3.6)

I(, ),12(1),2 E(1), E 2 (1), )
2 2 2 2

1-=•.(T 12 (s), T2 2 (s), Z1T 12 (S), Z2T2 2 (s))•
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It is shown below that the differential equations (3. 4) and the boundary

conditions (3. 5) and (3. 6) determine uniquely the Laplace transforms of

the currents and voltages within the coupler, together with the reflection

coefficients Rjk(s) and transmission coefficients Tjk(s) . Moreover,

it is shown that the Rjk(s) can be determined directly, without determining

Tik(s), Ej(x, s), etc. Notice that once Rjk(s) is known the currents and

voltages in the coupler can be obtained from the solution of the initial value

problem ( 3. 4), ( 3. 5), and the values at x = I of this solution determine

Tjk(s) , by (3.6).
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§4. Solution of the Laplace T ransformed Coupler Problem. The

matrix notation
21 2

"1 E E

I - , E -
1 ~E£

1 1 2E2
2 2 ,2 2

is used in what follows. Equations (3. 2) may be then written in the matrix

form

SX

1 0 e 0 R1 1 (s) R1 2 (s)

sI= + sx
C2!0 1 0 e R2 1 (s) R2 2 (s)

s-x

Z1 0 1 0. e 0 R 11(s) R 12(s)

sE = "X

S2
0 Z2 0 1 0 e R2 1 (S) R2 2 (s)

or simply
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ax

s1 =U + sx R(s)

(4.1) for x (< 0

sx

sE z[u - sx R(sl]

where

U 
R(ls) 

, and ZE R21(s) R22(s) 2

R( s) is called the reflection coefficient matrix. Similarly, equations (3. 3)

may ½e written

s(x- _ . )

sI(x, s) = ( j T(s)

0o e Cz 2

(4.2) for x > I

s (x-I1

sE(x, s) = Z T(s)
f~c2

0 e
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where

T(s) 1
\T 2 1 (s) T 2 2 (s)

may be called the transmission coefficient matrix.

The differential equations (3. 4) also take a simple form in matrix

notation, namely

dE
- + sLI= 0
dx

(4.3) for O<x<I

dl
- + sCE 0
dx

where

L= and C=

TLhm Lc2i c t m C 2

The continuity conditions (3. 5)and (3. 6) take the form
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{ sI(O) =U+ R(s)

(4.4)

sE(O) -Z[U - R(s)]

and

sI(1) =T(s)

(4.5)

sE(I) =ZT(s)

Equations (4. 3), (4. 4) and (4. 5) do not constitute a proper

boundary value problem for I(x) and E(x), as they stand, because

R(s) and T(s) are not known. However, (4. 4) and (4. 5) imply

(ZsI(O) + sE(O) = ZZ

(4.6)

ZsI(1) - sE(1) = 0

It will be shown that (4. 3) and (4.6) define unique functions I(x),

E(x).

If M is an m X n matrix, let M denote the complex conjugate

of the transposed matrix. Note that L L and C C, because L

and C are real and symmetric. It follows that if E and I satisfy (4.3)

then
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dE* - *•.-- sI L=O

(4. 7)
d*dl.-

This implies the following

Lemma 4.1 If E and I are 2 X I matrix solutions of (4. 3) on

a<x<b then

(4.8) E*I+ IIE lb -2 (Res) fb *LI + E**1a -ZRs)f(I LI+ECE)dx.
a a

Proof. By (4.3) and (4.7),

d * dE + dI dI* *dEdx (EI :IE) = -- I + E d+x-- ÷

-sI LI - sE CE- sE CE- sI LI

2 - (Res)(I LI + E CE)

If z = x + iy is a 2 X 1 matrix with real and imaginary parts

x and y, respectively, then a simple computation gives
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2
z Lz j , (LJkX4Xk 4jkyjyk) > 0j, kri

and
2

z Cz= ý (Cjkxjxk +C jkyjyk) >_ 0
j, k=l

Combining this with the preceding lemma gives

Corollary 4.1 If E and I are 2 Xl matrix solutions of (4.3)

and a<x<b and Res >0 then

(4.9) (E*I + I*E)x b < (E*I + I*E)x=aI.
I This result implies

Theorem 4. I (Uniqueness Theorem). The 2-point boundary value

problem (4. 3), (4. 6) has at most one solution, provided Res > 0.

Proof. Suppose that (E',I') and (E",I") are two solutions. Then

E = El - E" and I = I' - I" will solve (4.3) and

(4.10) E(0) =-ZI(O), E(l) =ZI(,)

Let
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Ej = I, j -1,2.

jE

Then Ej. I are 2 X I matrix solutions of (4. 3) and satisfy

(4.11) Ej (O) = -ZI (O), E('E) = Zi(i), 1 =l, ,

by (4.10). Applying (4.9) to Ej and Ij on 0<x(l andsubstituting

(4.11) gives

Z(I *(I)ZIi(I) + Ii*(O)ZIJ(0)) < 0, j =1,2.

But Z ((6jkZj)) with Z, > 0 and Z. > 0, from which it follows that IJ(O) =0

and therefore also EJ (0) = 0, by (4. 11) . This, with (4.3), implies that

E(x) = I(x) = 0 on 0< x <I, by the uniqueness theorem for the initial value

problem for (4.3). Thus El = El, I' = I" on 0< x <I , which proves the

uniqueness theorem.

The form of the boundary conditions (4. 6) suggests a change to the

new dependent variables

(I + , -E (I - f'E)

22

which satisfy
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E = 1 Z(E - 1), 1 (E +I)

s S

A simple calculation gives

Lemma 4. 2 E and I solve the 2-point boundary value problem

(4. 3) (4.6) if and only if E and I solve the 2-point boundary value

problem

dE
a + s(AE--B) =o

(4.12) or 0<x<l

df
S+ s(Bl - Al) = 0

where
A -(CZ+Z L), B (CZ L)

and

(4.13) E(O) =u , f() =0

Moreover,

I(0) =R(s), E(f) =T(s)

The 2-point boundary value problem (4.12), (4.13) can be solved

by solving two 1-point (initial value) problems. This reduction is based on
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Lemma 4. 3 If - and I solve (4.12) and - exists on an

Interval a <x <b then

(4.14) R a R(x, s) a f(x) (x)"1

solves the matrix Riccati equation

dR
(4.15) + s(3R -A dR- !A+ )= 0

on a<xCb.

Proof. Differentiating the matrix equation AA = U gives the rule

dA, /dx -A1 dA/dx A" . Differentiating the equation R f l- and using this

rule and (4.12) gives (4.15).

A converse to this result is provided by

Lemma 4.4 If R solves (4.15) and . solves

(4.16) d " +s(A - BR)E = 0

then i and I =RE solves (4.12).

Proof. Putting RE - I in ( 4. 15) gives the first of equations ( 4. 12).

Computing df /dx = dR/dx £ + RdE/dx, from (4.15) and (4.16) gives the

second.
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The function R(x, s) defined by (4.14) satisfies the boundary

condition R(1, s) = 0, by (4.13). Thus, the solution to the 2-point

boundary value problem (4. 12), (4.13) can be constructed by, first,

integrating (4.15) from x = A to x = 0 starting with R(1,s) = 0 and,

second, integrating (4.16) from x z0 to x =I, starting with E( 0) = U.

This construction will fail only if the function R(x, s) defined by (4. 15)

and R(t, s) = 0 fails to exist on the whole interval 0 < x < I . It is well

known that solutions of non-linear equations may have this behavior. However,

in the present case it is ruled out by the following

Theorem 4.2 If Res > 0 then the solution R(x) of (4.15)

satisfying R( 1) = 0 satisfies the inequalities

Z lR (x) 12 + Zz2 R 21(x)I 12 < ?

(4.17)

ZIIR 12(x) 12 + Z21R22(x)1 1 Z 2

on any interval < < x < I on which it exists.

Proof. Define E(x) on •<x<_. by (4.16) and E(•)--U,

and put I(x) =-R(x)E(x). Then E, I solve (4.12), by Lemma 4.4, and

hence E =Z(E -I) and I =E+f solve (4;3) on t<x<I andhave

the values
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(4.18) 1(4) -U + R()) I(4) I-Z(U - R(7))

and

I(J) = -(j), E(J) -ZE(J) whence E(J) mZI(1).

In component form, equations (4.18) read

1(0 = +R() () )

R 1+R

and

E(4) =
Z "z2R 21(t) Z2 (1-R 2( V))

Now, the two column vectors ý and Ij (j = 1, 2) from E and I satisfy

(4.3) on •<x < . Hence, by corollary 4.1 ,

(4.19) (1*Ij + IJ*E)x., I (EJ*j + IJ*Ej)l=g , j =1,2.

Taking j = 1 and substituting the above boundary values gives
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21z1*(1) z11(t ) :S Zl( -"RA 1 (6))(l + R1, (0) -Zz(R(zlw))2 + (l + wl 1 (9)) Zl(U -R 1  W) "ZzIR 1(4) 12

2z C- Z 1 R IR1 1(olU - Z2IR1(•.)I 2 •

This gives the first of inequalities (4.17), since Z is positive definite. The

second is derived similarly from (4.19) with J = 2.

The reduction of the 2-point boundary value problem (4.12), (4.13) to

two initial value problems is guaranteed by

Theorem 4. 3 The initial value problem

dR
& +s(RBR-AR-RA+B) =0 , O<x<i

(4.20)

R(U) = 0

has a unique solution R = R(x, s) for every s with Re s > 0. The initial

value problem

dE + s(A- BR)E 0, o<x<i

(4. U1)

E(0) = U
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has a unique solution, and E and I a R! provide the (unique) solution to

the 2-point boundary problem (4.12), (4.13).

Proof. The uniqueness of R(x, s) follows from a standard theorem

on the initial value problem for differential equations [ e. g., 3, Ch. 2].

The existence of R(x, a) on 0 < x < I follows from Theorem 4. 2 and the

standard existence and continuation theorems [ 3, Ch. 2].

Corollary 4. 2 The reflection coefficient matrix R( s) z R( 0, s)

can be obtained directly from the solution of the initial value problem (4. 20).

EC(x) and i(x) can then be obtained as the solution of the initial value

problem for (4.12) with E(0) =U, I(O) = R(s)

Corollary 4. 3 ZR(s) = R )Z .

Proof. ZR(s) = ZR( 0, s) and X = ZR(x, s) satisfies the equation

dX *S+ s(XHX-J0C-XK +ZHZ) =0

where

-1 1 1 -
H:BZ" =(C-Z IfZ).

and

K - ZAZ (zC + LZs)

Evidently, H* H and therefore X (x, a) satisfies the same equation as

X(x,s) . Since X (l, 7) =X(A,s) • 0, it follows that X (x, a) =X(xs)



#376 -33-

or 0 < x < , by the uniqueness theorem for the initial value problem.

Corollary 4. 4 ZIR1 2 (e) o Z2 R2 1(s)

Proof. Corollary 4.3 implies that ZIR1 2 (s) 2 Z2 R 1 (" ). Moreover,

it is easy to verify that R12( s) is analytic for Re s > 0 and is real for real s,

which implies that R2 1(;) = R21(s) .

The reflection coefficient matrix can be obtained by solving (4. 20)

numerically. For this purpose, the matrix Riccati equation should be written

as a system of four ordinary differential equations. On carrying out the matrix

operations this system is found to have the form

I dRl2
-- + s(BR11Ri +B1 2 R 1RS21 +B 2 1N 2R +B2 2 R12 R1 1 - AliR11 - A12 R21 - AlR11 - A2 1R12 +B 11  0

dRtl +s(B11 1 1 + B 2 R11 R2 + B 2 R+B 2 R1 2 R2 2 A -1 A1 A12 R -A2 R1 1 2 2 1 +e 2 -A

(4. ZZ)

dR 21 2d + s(BR1 R 2 1 R11 B12 R21 + 2 1R2 2 R1 1 + 2 2 R 2 2 R2 1 2A2 R A2 2 R2 1 A1 R2 1 A2 lR22 +B 2 1 ) = 0

dR2 2  2 B
-- 2+ s(BIIR2i•2 +BI Rz 1R22 + B2 1R2 2 R1 2 + B 2 2R2 - A2 1R1 2 -A 2 2 R2 2 A1 2 R21 - A2R2 2 + 2 2
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S5. Directional Couplers. The "directional" couplers are of

particular interest for applications [ 10]. They are characterized by the

property that the reflected wave is zero on line I (line 2) and the transmitted

wave is zero on line 2 (line 1) whenever the incident wave is zero on line I

(line 2) . An equivalent property Is r11(T) a r2 2((T) 0 and t 1 2(T) E t 2 1(T) N0

for all T. The corresponding property of the reflection and transmission

coefficient matrices Is Rllts) R R2 2 (s) N0, T12 (s) 8TZl(s) N0 for all s.

It is known that sufficient conditions for a coupler to be directional are

[10]

(5.1) L NET= -cTr- on o_<<,

and

(5.2) 1E7•l-=Z 1 , 4 4Z 2  on o'_2(2

where Z and Z are the constant impedances on the uncoupled portions of

the lines. The sufficiency of these conditions is verified below.

The matrices A and B can be written

Z L1 Lm + Z GCm
ZI I +Z 2 In

11

Lm L2

Z m 22 Z2
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and

L LL LM

2

L m L2Z

"2C2 z 2

Hence, conditions (5. 1) and (5. 2) imply

A;

and

Lo -m

B=

L
m

2

In this case the matrix Riccati system (4. 22) becomes
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dRII L L 2S+ M(- 'RIRl "- -12- "IRl - 4 lO I) =

dR2L L m

+ s(- 2 RlIRzz-z R12 - C I + 4L2C2 ) R12 -~ 0
1 2 1 I

(5.3)

dR21  L 2  L Lm

--- + R(- zL - I +,2-R -- R• 1 ,T-E•, 0=,

dR? L L
22 R m m.4-Cs(1- R 2 ?R2 - R2 2 R 1 2 2L 2 CR)=

These equations imply

Theorem 5. 1 If (.5.1) and (5. 2) hold then RY( s) = R2 2 (s) =0

R (S) = (Z /Z )R1(s), and R,(s) = R(0, s) is the value at x =0 of the
21 Z1/ R2 ( 12

solution Rl, = Rll(x, s) of

dR,2 L L
12 m R2 +m1. L-c) <~

dx 2 + 2 12 -=x

(5.4)

R12 (1,s) = 0
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Proof. If R1z(xs) is defined by (5.4), R21(x, s) is defined

to be (Zl/Z 2)R 1z(x,s), and Rl(x,,s) and R2 2(x,s) are defined to be

zero then the resulting matrix R(x, s) is easily verified to satisfy (5.3)

and R(1, s) = 0. But these conditions define R(x, s) uniquely, whence

R(x, s) must have the form indicated.

Corollary 5.1 If ( 5. 1) and ( 5. 2) hold then the coupler is

directional and the reflection coefficient RI( s) is characterized by

1 (5. 4).
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16. Formulation and Solution of the Steady State Coupler Problem.

The steady state solutions of the transmission line equations (1. 1) have

the form

iJt

Si (x, t) =Re{e Iit(x)} ej(x, t) =Re{e Etj (x)}, I=1,2

where II, I2, E1 , E2  satisfy the equations

I
, d--x- ÷iC( L1 1 ÷ LI2) = 0

dE,
dx+ iw(L1 1 + L m1 2  =0

dE

S+ iw(L 1,~ + LI?) --0

d I

--+ iw(CIEl+CmE2 ) =0

-- +d'' iw(CmE, + CE2) O0
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In terms of the column vectors

E 2 1 2

the equations take the more concise form

dE "
+ iWLI = 0

(6.1)

dI
U +iCE =0

In discussing steady state problems it is convenient to deal directly with the

complex-valued vectors E(x) , I(x) rather than the real-valued vectors

e(x, t) =Re {e E(x)} , i(x,t) =-Re{e I(x)}

On uniform uncoupled portions of the transmission lines, the steady

state solutions have the form

A -ikX ikX -ikAx Ik1x
a= a1 e + bIe , 1 =Z(ae -bIe

(6.2)

-ik x ik x -ik x ik x
2 2 , (a e 2 2

I2 =ae +b e , E2 =Z ~ -b e )
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where aI, a 2 , b, and b2 are constants, and k= w/c 1 , k2 = /c2.

In the case of a coupler occupying the segment 0 < x < I, the constants

a,, a., bl, b. may have different values on the two uncoupled portions

x<O and x>1.

The steady state coupler problem is to find a :olution of (6. 1)

corresponding to a prescribed steady state wave incident on the coupler

from the left. This means that for x < 0, aI and a 2 have prescribed

value (and bI and b2 are to be determined), while for x> 1, bI = b = 0

(and aI and a 2 are to be determined). The solution for arbitrary prescribed

values (al, a 2 ) on x < 0 can be derived from the special cases (al, a 2 ) = (1, 0)

and (al, a 2 ) (0, 1) by superpositlon. Hence, only these cases are considered

here. If E1, 1 and E , I denote the solutions for these two cases

then for x<_O,

"-ikX 1k 1'1 = Ai )xI11 = e + Pl(w) e E I Z1( - P iUMe

SA ik2x I ik2 x
1 2 P2 1 (W)e E2 =-Z2P 1(W) e

ik1x 2 ikIx
I1I P 2(W)e E, Z1P1 W

-ik 2 -Ak2 22 2 x
12 =e + P ,(W)e , E = - Pe) ) 2
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while for x> ,

"Q ( ) k (x 'l) E• 1 I Z IQ M( • e -A ( -

-ik 2(x-t) -ik 2 (X-1)
2 21 W)eE = Z2 Q2 1(W)e

""ikl(X') 2A-Ik(x-1)

I - Q1 2(W)e E1  Z1 12 ( e

"-ik2 (x-') -i2 -ik2 (x-1)
1 2 = Q2 2 (w) e E2 =Z 2 Q2 2 (W)e

In matrix notation these take the form

1 2 -ik Ix Akx
0 e 0 P(W) P12 (W)

I +ix k
•'I"~~~1 122/ :lk'l~

T1 ~2 0 2 x A 2 x
e 21() P22(

1 ~2 k x AX(E E)( :1' :iz 01 e 0 0 P 11(w) P12U)

E2E 1 2 0 e 0 e p 21(w) P2 2(w)
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for x < 0 and

-Is 1 xI 0 Q 11(w) Q12 (w)

-ik 2(X-1) QZ M q 2

z 0

E -

for x> I . In particular, I = I (x, w) and E = E(x, w) satisfy the

differential equations (6. 1) for 0 < x < I and the boundary conditions

I (•0) =U + P(W)

(6.3)

E( 0) = Z[U - P(w)]j

and

1()=Q(WA)

(6.4)

{E(i) =:ZQ(w)

where
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(P1 l(w) PIZ(w (QUM( QIZ(a

P(W) = and Q(w) z

P z(W) Pz() M Q (W) Q Z(f,)

are (unknown) reflection and transmission coefficient matrices.

Problem (6.1), (6. 3), (6. 4) is formally identical with problem

(4.3), (4.4), (4.5) of §4 if s =iw and

(6.5) 1(x,W) =iWl(x,iW), E(x, w) = wE(x,iw)

Moreover, the second problem was shown to have a unique solution when

Res > 0 (Theorems 4.1 and 4. ?). This proves

Theorem 6. 1 The steady state coupler problem has a unique

solution which is given by (6. 5). Moreover,

P(w) = R(iw), Q(w) = T(iw)

and therefore P(w) is the solution of the initial value

dP{ +iw(PBP-AP-PA+B)=0, 0_x_ ,

P( , w) = 0.
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Note that equality holds in ( 4. 9) when Re z 0. Hence, (4. 9)

implies (see the proof of Theorem 4. 2)

Corollar! 6. 1 The reflection and transmission coefficient matrices

for the steady state coupler problem satisfy the identities

z1( I Pi 1(w) I?,+ Q11(w) 12) + Z2( I 21 (w) 12 + IQ 21(w) 12) Z,

z1( I P (W) I2 + I Q (W) I2) + Z2 ( I P2 (W) 12+ 1 Q2 (W) I) z



#376 -45-

REFERENCES

1. Bewley, I. V., Traveling Waves on Transmission Systems, 2nd Ed.,

J. Wiley, New York (1951).

2. Carson, J. R., and Hoyt, R. S., Propagation of Periodic Waves Over

a System of Parallel Wires, Bell System Tech. J., 6, (1927) 495-545.

3. Coddington, E., and Levinson, N., Theory of Ordinary Differential

Equations, Mc Graw-Hill, New York (1955).

4. Courant, R., and Hilbert, D., Methods of Mathematical Physics,

Volume II, Interscience Publishers, New York (1962).

5. Duff, G. F. D., Mixed Problems for Linear Systems of First Order

Equations, Canad. J. Math., 10 (1957) 127-160.

6. Friedrichs, K. 0., Symmetric Hyperbolic Linear Differential Equations,

Comm. Pure Appl. Math., 7 (1954) 345-393.

7. Kay, I., Input Impedances for the Non-Uniform Zn Wire Transmission

Line, Mathematics Research Center, U. S. Army, Technical Summary

Report #252, (August 1961) 1-26.

8. Lax, P. D., On Cauchy's Problem for Hyperbolic Equations and the

Differentiability of Solutions of Elliptic Equations, Comm. Pure Appl.

Math., 8 (1955) 615-633.

9. Levin, J. J., On the Matrix Riccati Equation, Proc. Amer. Math. Soc.,

10 (1959) 519-524.



46- #376

10. Oliver, B. M., Directional Electromagnetic Couplers, Proc. I. R. E.,

42 (1954) 1686-1692.

11. Phillips, R. S., Dissipative Operators and Hyperbolic Systems of

Partial Differential Equations, Trans. Amer. Math. Soc., 90 (1959)

193-254.

12. Pierce, J. R., A Note on the Transmission Line Equation in Terms of

Impedance, Bell System Tech. J., 22 (1943) 263-265.

13. Pipes, L. A., Matrix Theory of Multiconductor Transmission Lines,

Philos. Mag., 24 (1937) 97-100.

14. Redheffer, R. M., Inequalities for a Matrix Riccati Equation, J. Math.

and Mech., 8 (1959) 349-367.

15. Reid, W. T., A Matrix Differential Equation of Riccati Type, Amer. J.

Math., 68 (1946) 237-246.

16. Reid, W. T., Solutions of a Riccati Matrix Differential Equation as

Functions of the Initial Values, J. Math. and Mech., 8 (1959) 221-230.

17. Rice, S. 0., Steady State Solutions of Transmission Line Equations,

Bell System Tech. J., 20 (1941) 131-178.

18. Schelkunoft, S. A., Remarks Concerning Wave Propagation in Stratified

Media, Symposium on the Theory of Electromagnetic Waves, Interscience

Publishers, New York (1951) 117-128.

S1V. Sternberg, R. L., and Kaufman, H., Application of the Theory of

Systems of Differential Equations to Multiple Non-Uniform

Transmission Lines, J. Math. and Phys. 30 (1951) 244-252.



#376 -47-

20. Walker, L R., and Wax, N., Non-Uniform Transmission Lines and

Reflection Coefficients, 1. Appl. Phys., 17 (1946) 1043-1045.

21. Wilcox, C. H., The Domain of Dependence Inequality and Initial-

Boundary Value Problems for Symmetric Hyperbolic Systems,

Mathematics Research Center, U. S. Army, Technical Summary Report

#333, (August 1962) 1-20.

I.


